Implementation of a Full Bridge Series-Parallel Resonant DC-DC Converter Using Artificial Neural Networks and Sequential State Machine Controllers
نویسندگان
چکیده
In this paper, two methods of control for high-voltage Full Bridge Series-Parallel Resonant (FBSPR) DC-DC converter are proposed and the results are compared. Soft switching operation using Zero Current Switching (ZCS) and Zero Voltage Switching (ZVS) technologies is employed to decrease the losses and optimize the efficiency of converter. The way of obtaining small-signal model of FBSPR converter using the generalized averaging method is discussed. Then two control methods using Artificial Neural Networks (ANN) and Sequential State Machine (SSM) are explained and the experimental results are compared. The ANN controller is trained according to the small signal model of the converter and operating points and the SSM controller operates on base of a finite number of states, actions and functions and determines transition from one state to another according to FBSPR converter conduction status. To compare the performances of two controllers, a prototype is designed and implemented. The prototype is tested for step changes in both output load and reference voltage at steady state and under transient conditions. Comparison between experimental results for both ANN and SSM controllers show better speed performances for SSM controller in small changes in load and more reliability for ANN controller in case of large variations.
منابع مشابه
High voltage gain DC-DC resonant converter
In this paper, a DC-DC resonant converter with high voltage gain and small size is studied. To reduce the size and weight of this converter, the operating frequency should be as high as possible. In this research, the frequency changes from 120 to 200 kHz. Due to the high operating frequency, it is necessary to reduce the switching losses using soft switching methods. Resonant converters are su...
متن کاملHigh voltage gain DC-DC resonant converter
In this paper, a DC-DC resonant converter with high voltage gain and small size is studied. To reduce the size and weight of this converter, the operating frequency should be as high as possible. In this research, the frequency changes from 120 to 200 kHz. Due to the high operating frequency, it is necessary to reduce the switching losses using soft switching methods. Resonant converters are su...
متن کاملVoltage Regulation of DC-DC Series Resonant Converter Operating in Discontinuous Conduction Mode: The Hybrid Control Approach
Dynamic modeling and control of dc-dc series resonant converter (SRC) especially when operating in discontinuous conduction mode (DCM) is still a challenge in power electronics. Due to semiconductors switching, SRC is naturally represented as a switched linear system, a class of hybrid systems. Nevertheless, the hybrid nature of the SRC is commonly neglected and it is modeled as a purely contin...
متن کاملA New ZVZCS Isolated Dual Series Resonant DC-DC Converter with EMC Considerations
A novel ZVZCS isolated dual series-resonant active-clamp dc–dc converter is proposed to obtain high efficiency. The proposed converter employs an active-clamp technique, while a series-resonant scheme controls the output voltage with the complementary pulse width modulation controller. The active-clamp circuit serves to recycle the energy stored in the leakage inductance or the magnetizing ...
متن کاملDesign of an Intelligent Bi-Directional DC- DC Converter with Half Bridge Topology
This paper introduces a novel Bi-directional DC-DC converter with artificial neural network controller (ANN).Bidirectional power flow is obtained by the same power components and provides a simple, efficient, and galvanically isolated converter. In the presence of DC mains the converter operates as buck converter and charges the battery. When the DC main fails, the converter operates as boost c...
متن کامل